1. Find the inverse of the matrix \(A = \begin{bmatrix} 3 & 2 \\ -1 & -2 \end{bmatrix} \) and use it to solve the equation \(Ax = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \).

2. Let \(A = \begin{bmatrix} 1 & 4 & -2 & 3 & -2 \\ -2 & -8 & 4 & -5 & 7 \\ 3 & 12 & -6 & 9 & -9 \end{bmatrix} \).
 (a) Find the rank of \(A \).
 (b) Find a basis of the null space of \(A \).
 (c) Find a basis of the column space of \(A \).

3. Let \(A = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 1 & 1 & 4 \end{bmatrix} \).
 a. Find the eigenvalues of \(A \); for each eigenvalue \(\lambda \), find a basis of the corresponding eigenspace of \(A \).
 b. Is \(A \) diagonalizable? Why?

4. Let \(A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & 3 \end{bmatrix} \). Find an invertible matrix \(P \) and a diagonal matrix \(D \) such that \(A = PDP^{-1} \).

5. Find the characteristic polynomial of the matrix \(A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 3 & 0 \\ 2 & -1 & 2 \end{bmatrix} \).

6. Let \(T: \mathbb{R}^2 \to \mathbb{R}^2 \) be defined by \(T(x) = Ax \), where \(A = \begin{bmatrix} 2 & -1 \\ 0 & 2 \end{bmatrix} \). Find the matrix \([T]_B\) of \(T \) relative to the basis \(B = \{b_1, b_2\} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\} \).

7. A \(2 \times 2 \) matrix has eigenvalues \(\lambda_1 = 1 \) and \(\lambda_2 = 1/2 \) with corresponding eigenvectors \(v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \) and \(v_2 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} \). Find a formula for \(A^k \), where \(k \) is a positive integer.

8. True or False?
 (a) If \(A \) is an \(n \times n \) matrix such that the linear transformation \(T(x) = Ax \) is one-to-one, then \(A \) is invertible.
 (b) The null space of a \(4 \times 5 \) matrix of rank 4 must be trivial; that is, it must equal \(\{0\} \).
 (c) If an \(n \times n \) matrix \(A \) has \(n \) linearly independent eigenvectors, then \(A \) has \(n \) distinct eigenvalues.
 (d) If \(\lambda = 0 \) is an eigenvalue of \(A \), then \(A \) is not invertible.